

Product Overview

The ASL5006 is a GaN MMIC Low Noise Amplifier (LNA) chip which operates from 5 to 6 GHz. The ASL5006 features extremely flat performance characteristics including 16.5 dB of small signal gain, 2.18 dB of noise figure, output IP3 of +37 dBm and output P1dB of 21.5 dBm across the operating band. With a reflective power limiter, the ASL5006 has a power handling capacity of 37.5 dBm continues wave (CW). Also, ASL5006 can be switched on/off with a digital voltage of 0/3.3 V. This versatile LNA is ideal for hybrid and MCM assemblies due to its compact size, consistent output power and DC blocked RF I/O's. All data is measured with the chip in a 50 Ohm test fixture connected via two 0.025 mm (1 mil) diameter bond wires of minimal length 0.51 mm (20 mil).

Functional Block Diagram

Key Features

- 1. Integrated DC blocking at RF input/output
- 2. Enable/Disable mode with digital signal
- 3. Bandwidth: 5 GHz to 6 GHz
- 4. Small Signal Gain: 16.5 dB
- 5. Noise Figure: 2.18 dB
- 6. Output P1dB: 21.5 dBm
- 7. Output TOI: 37 dBm
- 8. Input Power Handling:37.5 dBm(CW), 40.5 dBm (Pulsed)
- 9. 50 Ohm Matched Input/output
- 10. Die Size: $3.5 \times 1.5 \times 0.1 \text{ mm}$

Applications

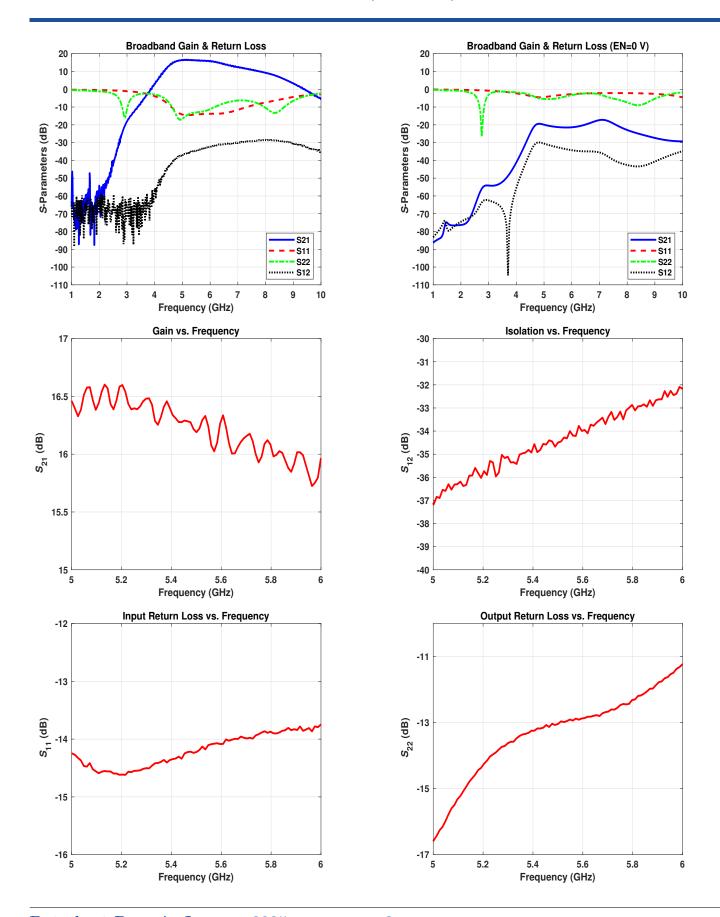
- 1. Instrumentation
- 2. Point-to-point communication

Absolute Maximum Rating

Drain Bias Voltage (VDD)	$+40~\mathrm{Vdc}$
Gate Bias Voltage (VSS)	-10 Vdc
RF Input Power (CW)	$37.5~\mathrm{dBm}$
RF Input Power (Pulsed)	$40.5~\mathrm{dBm}$
Channel Temperature	200 °C
Continuous $Pdiss(T = 85 ^{\circ}C)$	$1.5~\mathrm{W}$
Storage Temperature	-65 to +150 °C
Operating Temperature	-40 to +65 °C

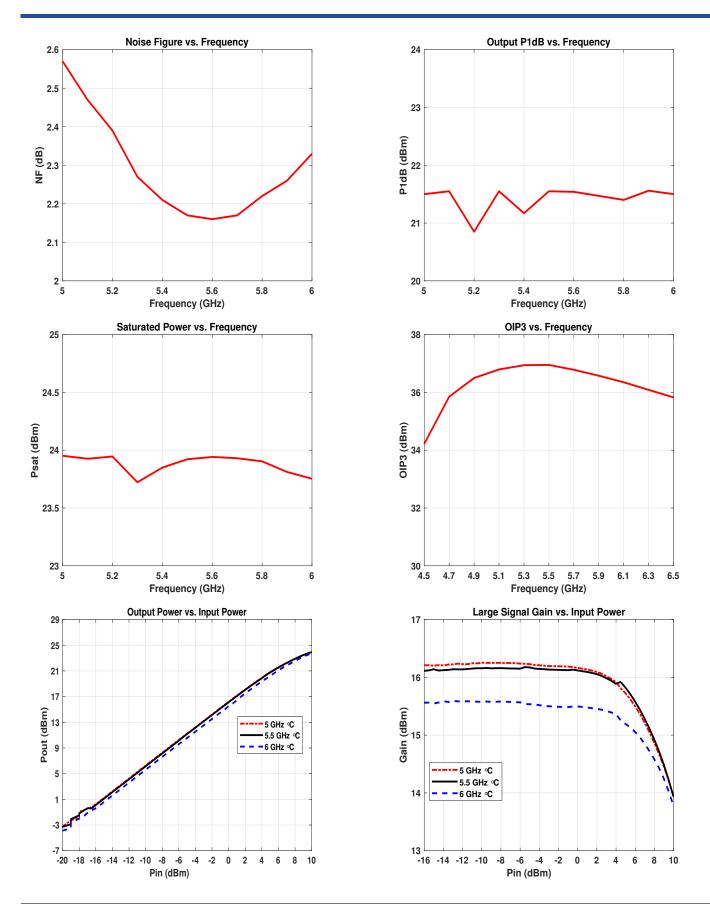
ELECTROSTATIC SENSITIVE DEVICE OBSERVE HANDLING PRECAUTIONS

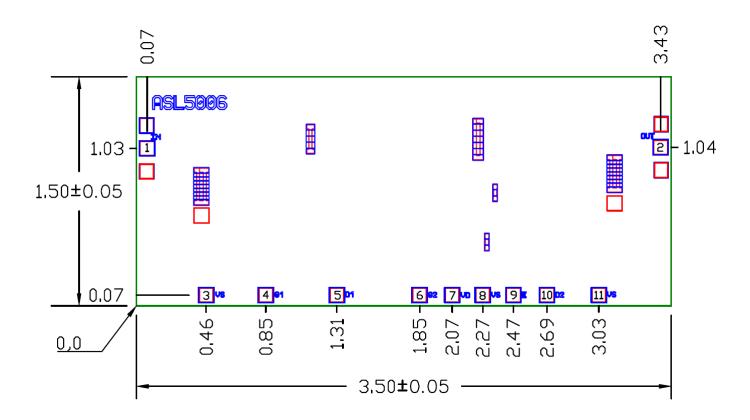
Electrical Specifications


Parameter	Min.	Typ.	Max.	Units
Frequency Range	5	-	6	GHz
Gain	15.8	16	16.5	dB
Noise Figure	2.18	2.3	2.58	dB
Input Return Loss	-	14	-	dB
Output Return Loss	-	13	-	dB
Output Power for 1 dB Compression (P1dB)	-	21.5	-	dBm
Saturated Output Power	-	23.8	-	dBm
Output Third Order Intercept Point (IP3)	-	37	-	dBm
Supply Current (with RF)	-	85	-	mA

Test conditions unless otherwise noted: TA=+25° C, VDD=10 V, VSS=-6 V, EN=3.3 V, ID=85 mA, Z0=50 Ω Tcase is Cold Plate temperature, and Base Plate temperature (TBP) is 85°C.

Typical Performance Curves

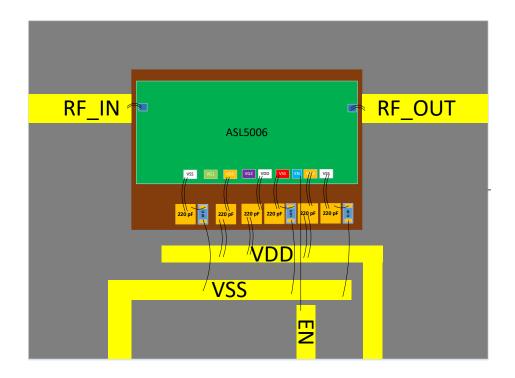

Test conditions unless otherwise noted:VDD=10 V, VSS=-6 V, EN=3.3 V


Typical Performance Curves

Test conditions unless otherwise noted:VDD=10 V, VSS=-6 V, EN=3.3 V

Mechanical Information

NOTES:


- 1. ALL DIMENSIONS ARE IN MILLIMETERS
- 2. CHIP SIZE = 3.5 mm \times 1.5 mm (DICING STREET INCLUDED) \pm 0.05 mm
- 3. RF pads $(1,2) = 0.1 \times 0.1 \text{ mm}$
- 4. DC pads $(3,4,5,6,7,8,9,10,11) = 0.1 \times 0.1 \text{ mm}$
- 5. BACKSIDE METALLIZATION: GOLD
- 6. BACKSIDE METAL IS GROUND
- 7. BOND PAD METALIZATION: GOLD
- 8. NO CONNECTION REQUIRED FOR UNLABELED BOND PADS
- 9. OVERALL DIE SIZE $\pm 50~\mu\mathrm{m}$

Bond Pad Description

1	RF-IN	This pad is AC coupled and matched to 50 Ohms.
2	RF-OUT	This pad is AC coupled and matched to 50 Ohms.
3,11	VSS	Negative Supply Voltage for the amplifier.
4,6	-	Not Connected.
5,10	VDD	Positive Supply Voltage for the amplifier. External bypass capacitors of 220 pF or 150 pF are required.
7	VDD	Positive Supply Voltage for the amplifier. External bypass capacitors of 220 pF or 150 pF are required.
8	VSS	Negative Supply Voltage for the amplifier.
9	EN	This pad is for enabling/disabling of amplifier. A digital signal $0/3.3$ V. This pad is pulled down internally.

Assembly Diagram

Assembly Notes

Component Placement and Adhesive Attachment Assembly Notes:

- 1. Use vacuum collet to pick up the die.
- 2. The force should be controlled during placement and mounting specially no force should be applied to air bridges.

Reflow process assembly notes:

- 1. Use CMC or MoCu carrier to decrease thermal expansion mechanical stress
- 2. Use AuSn (80/20) solder and limit exposure to temperatures above 300 °C to 3-4 minutes, maximum.
- 3. An alloy station or conveyor furnace with reducing atmosphere should be used.
- 4. Do not use any kind of flux.
- 5. Devices must be stored in a dry nitrogen atmosphere.
- 6. Use Au bond wire.

Contact Information

For the latest specifications, additional product information:

Web: www.abba-semi.com Email: info@abba-semi.com