

LIN

Local Interconnect Network Transceiver Preliminary Version | August 2019

1. Introduction

The local interconnect network (LIN) is a serial communication protocol, designed to support automotive networks in conjunction with a Controller Area Network (CAN) module. LIN is a single wire bidirectional bus typically used for low speed in-vehicle networks using data rates up to 20 kbps. As the lowest level of a hierarchical network, LIN enables cost effective communication with sensors and actuators when all the features of CAN communication are not required. They provide excellent EMC (Electromagnetic Compatibility) and Radiated Emission performance, ESD (Electrostatic Discharge) robustness, and safe behavior, in the event of a LIN bus short-to-ground, or a LIN bus leakage during low-power mode.

2. Features

- Operating supply range $6 V \le V_{SUP} \le 26 V$
- Wide input voltage range -40 V \leq V_{LIN} \leq 40V
- Compliant to LIN 2.0, LIN 2.1, LIN 2.2, LIN 2.2A and ISO/DIS 17987–4.2
- Conforms to SAEJ2602 recommended practice for LIN
- Transmit data with baud rate up to 20 kbps
- Active bus wave shaping, offering excellent radiated emission performance
- Very high immunity against electro-magnetic interference
- Sustains up to 15.0 kV minimum ESD IEC61000-4-2 on the LIN Bus, 20 kV on the WAKE pin, and 25 kV on the VSUP pin
- Power up and down glitch free operation
- Control of external voltage regulator using INH pin
- Protection features:
 - Under voltage protection on VSUP TXD dominant state time-out protection Thermal shutdown Unpowered node or ground disconnection failsafe at system level

- Integrated input EMI filter
- Sleep mode: ultra-low current consumption allows wake up events from: LIN bus

Wake up input (external switch) Local wake up through EN

- Local and remote wake-up capability reported by RXD pin
- Fast baud rate selection (up to 100 kbps) reported by RXD pin
- Internal LIN slave termination resistor

3. Pinning Information

	PIN				
	NO.	Name	Function	Formal Name	Description
-	1	RXD	Output	Data Output	This pin is the receiver output of the LIN interface which reports the state of the bus voltage to the MCU interface
	2	EN	Input	Enable Control	This pin controls the operation mode of the interface.
-	3	WAKE	Input	Wake Input	This pin is a high-voltage input used to wake- up the device from Sleep mode.
	4	TXD	Input	Data Input	This pin is the transmitter input of the LIN interface which controls the state of the bus output.
	5	GND	Ground	Ground	This pin is the device ground pin.
-	6	LIN	Input/Output	LIN Bus	This bidirectional pin represents the single- wire bus transmitter and receiver.
	7	VSUP	Power	Power Supply	This pin is the device battery level power supply.
	8	INH	Output	Inhibit Output	This pin can have two main functions: controlling an external switchable voltage regulator having an inhibit input, or driving an external bus resistor in the master node application.

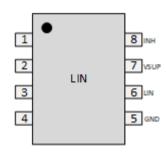


Figure 1: Pinning configuration

4. Quick Reference

Symbol	Parameter	Condition	Min	Max	Unit
VSUP	Supply voltage		-0.3	40	V
VLIN	Bus voltage		-40	40	V
Vwake	Wake voltage		-40	Vs+0.3	V
VINH	Inhibit voltage		-0.3	Vs+0.3	V
Vtx,rx,en	Logic voltage ¹		-0.3	5.5	V
	Supply current in sleep mode	$V_{SUP} \leq$ 13.5 V, Recessive State 13.5 V < $V_{SUP} <$ 27 V $V_{SUP} \leq$ 13.5 V, Shorted to GND	- - -	197 208 200	μΑ μΑ μΑ
lcc	Supply current in normal or slow or fast mode	Bus Recessive, Excluding INH Output Current Bus Dominant, Excluding INH Output Current	-	0.62 1.3	mA mA
Tj	Junction temperature	Curcin	-40	150	°C

 $^{^1}$ At Vs > 5.5 v

5. Ordering Information

	Package		
Type number	Name	Description	Version
	SO8	plastic small outline package; 8 leads; body width 3.9 mm	

6. Block Diagram

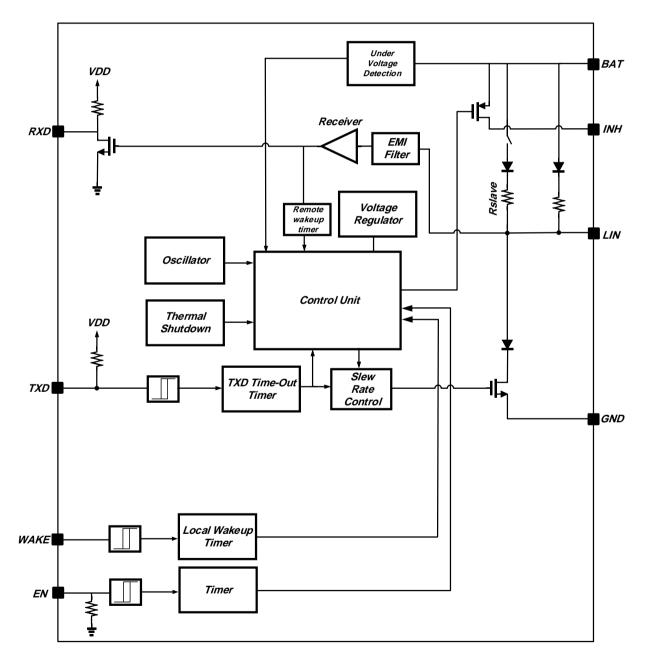


Figure 2: Block diagram

7. Maximum Ratings

All voltages are with respect to ground, unless otherwise noted. Exceeding these ratings may cause a malfunction or permanent damage to the device.

Ratings	Symbol	Value
Electrical Ratings		
Power Supply Voltage		1
Iormal Operation (DC) Transient input voltage with external component (according to ISO7637-2 & IS & "Hardware Requirements for LIN, CAN and Flexray Interfaces in Automotiv	V _{SUP(SS)} SO7637-3 ve Applications")	-0.3 to 27
See <u>Figure 13)</u> Pulse 1 (test up to the limit for damage - Class A <u>1</u>)	V _{SUP(S1)}	-100
Pulse 2a (test up to the limit for damage - class A^{1})	Vsup(s2a)	+75
Pulse 3a (test up to the limit for damage - Class A ¹)	VSUP(S3A)	-150
Pulse 3b (test up to the limit for damage - Class A 1)	Vsup(s3b)	+100
Pulse 5b (Class A) ¹	Vsup(s5b)	-0.3 to 40
VAKE	I	l .
Jormal Operation within series 2*18 kΩ resistor (DC) Transient input voltage with external component (according to ISO7637-2 & IS & "Hardware Requirements for LIN, CAN and Flexray Interfaces in Automotiv See <u>Figure 14</u>)	VWAKE(SS) SO7637-3 /e Applications")	-27 to 40
Pulse 1 (test up to the limit for damage - Class D ²)	V _{WAKE(S1)}	-100
Pulse 2a (test up to the limit for damage - Class D ²)	Vwake(s2a)	+75
Pulse 3a (test up to the limit for damage - Class D ²)	V _{WAKE(S3A)}	-150
Pulse 3b (test up to the limit for damage - Class D^2)	V _{WAKE(S3B)}	+100
ogic voltage (RXD, TXD, EN Pins)	V _{LOG}	- 0.3 to 5.5
IN Bus Voltage		
Iormal Operation (DC)	V _{BUS(SS)}	-27 to 40
ransient (coupled through 1.0 nF capacitor, according to ISO7637-2 & ISO76 & "Hardware Requirements for LIN, CAN and Flexray Interfaces in Automotiv See <u>Figure 15</u>)		1
Pulse 1 (test up to the limit for damage - Class D ²)	V _{BUS(S1)}	-100
Pulse 2a (test up to the limit for damage - Class D^2)	V _{BUS} (S2A)	+75
Pulse 3a (test up to the limit for damage - Class D ²)	V _{BUS(S3A)}	-150
Pulse 3b (test up to the limit for damage - Class D^2)	V _{BUS} (S3B)	+100
NH voltage /current		
DC Voltage	V _{INH}	-0.3 to V _{SUP} +0.3
ransient (coupled through 1.0 nF capacitor, according to ISO7637-2 & ISO76 & "Hardware Requirements for LIN, CAN and Flexray Interfaces in Automotiv See <u>Figure 16</u>)		
Pulse 1 (test up to the limit for damage - Class D ²)	VINH(S1)	-100
Pulse 2a (test up to the limit for damage - Class D ²)	VINH(S2A)	+75
	VINH(S3A)	-150
Pulse 3a (test up to the limit for damage - Class D ²)	VINH(S3B)	-150

¹ Class A: All functions of a device/system perform as designed during and after exposure to disturbance

² Class D: At least one function of the transceiver stops working properly during the test, and will return to proper operation automatically when the exposure to the disturbance has ended. No physical damage of the IC occurs.

Ratings	Symbol	value	Unit
ectrical Ratings			1
ESD Capability - AECQ100			
Human Body Model - JESD22/A114 (C _{ZAP} = 100 pF, R _{ZAP} = 1500 Ω)			
LIN pin versus GND	Vesd1-1	±10.0 k	
Wake pin versus GND	Vesd1-2	±8.0 k	
All other pins	Vesd1-4	±4.0 k	
According to "Hardware Requirements for LIN, CAN and Flexray Interfaces in Automotive Applications" ($C_{ZAP} = 150 \text{ pF}$, $R_{ZAP} = 330 \Omega$) Contact Discharge, Unpowered			
LIN pin without capacitor	Vesd4-1	±15 k	
LIN pin with 220 pF capacitor	Vesd4-2	±15 k	
V_{SUP} (10 μ F to ground)	Vesd4-3	±25 k	
WAKE (2*18 k Ω serial resistor	Vesd4-4	±20 k	
INH pin	Vesd4-5	±2.0 k	
LIN pin with 220 pF capacitor and indirect ESD coupling (according to ISO10605 - Annex F)	Vesd4-6	>±15 k	v
According to ISO10605 (2.0 k Ω / 150 pF) - Unpowered - Contact discharge			
LIN pin without capacitor	Vesd5-1	±20 k	
LIN pin with 220 pF capacitor	Vesd5-2	±25 k	
V _{SUP} (10 μF to ground)	Vesd5-3	±25 k	
WAKE (2*18 k Ω serial resistor)	Vesd5-4	±25 k	
(2.0 k Ω / 330 pF) - Powered - Contact discharge		_!	
LIN pin without capacitor	Vesd6-1	±8 k	-
LIN pin with 220 pF capacitor	Vesd6-2	±10 k	
V_{SUP} (10 μ F to ground)	Vesd6-3	±12 k	
WAKE (2*18 k Ω serial resistor)	Vesd6-4	±15 k	
ermal Ratings			1
Operating temperature			
Ambient	TA	-40 to 125	
Junction	ΤJ	-40 to 125	°C
Storage temperature	Tstg	-40 to 150	°C
Thermal resistance, junction to ambient	RθJA	150	°C/W
Peak package reflow temperature during solder mounting ¹	TSOLDER	240	°C
Thermal shutdown temperature	Тѕнит	150 to 200	°C
•		100 10 200	

Ratings

Value Unit

Symbol

¹ Pin soldering temperature limit is for 10 seconds maximum duration. Not designed for immersion soldering. Exceeding these limits may cause malfunction or permanent damage to the device.

8. Static Electrical Characteristics

Characteristics under conditions 7.0 V \leq V_{SUP} \leq 18 V, -40°C \leq T_A \leq 125°C, GND = 0 V, unless otherwise noted. Typical values reflect the approximate parameter means at T_A = 25°C under nominal conditions, unless otherwise noted.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
VSUP Pin (De	vice Power Supply)					_
V _{SUP}	Nominal Operating Voltage		-0.3	13.5	18.0	V
V _{SUPOP}	Functional Operating Voltage ¹		7	-	30	V
VSUPLD	Load Dump		-	-	40	V
VPOR	Power-On Reset (POR) Threshold	Vsup Ramp Down and INH goes High to Low	3.7	-	5.4	v
Vporhyst	Power-On Reset (POR) Hysteresis		-	350	-	mV
Vuvl, Vuvh	V _{SUP} Under-Voltage Threshold (positive and negative)	Transmission disabled and LIN bus goes in recessive state	4.7	-	6	V
Vuvhyst	V _{SUP} Under-Voltage Hysteresis (V _{UVL} - V _{UVH})		-	300	-	mV
		$V_{\text{SUP}} \leq 13.5$ V, Recessive State	-	45	197	μΑ
	Supply Current in Sleep Mode	$13.5 V < V_{SUP} < 27 V$	-	55	208	μA
Icc		$V_{\text{SUP}} \leq 13.5$ V, Shorted to GND	-	50	200	μA
	Supply Current in Normal or	Bus Recessive, Excluding INH Output Current	-	0.4	0.62	mA
	Slow or Fast Mode	Bus Dominant, Excluding INH Output Current	-	1	1.3	mA
RXD Output	1					
Vol	Low Level Output Voltage	$I_{IN} \leq 1.5 \text{ mA}$	0.2	-	0.5	V
Vон	High Level Output Voltage	V_{EN} = 5.0 V, $I_{\text{OUT}} \leq 250~\mu\text{A}$	4.25	-	5.34	V
TXD Input P	in (Logic)					
V _{IL}	Low Level Input Voltage		-	-	2.0	V
V _{IH}	High Level Input Voltage		4.0	-	-	V
VINHYST	Input Threshold Voltage Hysteresis		0.4	1	2	V
IPU	Pull-up Current Source	V _{EN} = 5.0 V, 1.0 V < V _{TXD} < 3.5 V	-80	-60	-40	μA
EN Input Pir	n (Logic)			11		
V _{IL}	Low Level Input Voltage		-	-	2.0	V
VIH	High Level Input Voltage		4.0	-	-	V
VINHYST	Input Voltage Threshold Hysteresis		0.4	1.3	2	v
Rpd	Pull-down Resistor		80	85	300	kΩ
LIN Physical	Layer- Transceiver LIN ²					
VBAT	Operating Voltage Range ³		7.0	-	18	V
VSUP	Supply Voltage Range		7.0	-	18	V
VSUP_NON_OP	Voltage Range (within which the device is not destroyed)		-0.3	-	40	v

¹ For the functional operating voltage, the device is functional and all features are operating. The electrical parameters are noted under conditions 7.0 V \leq V_{SUP} \leq 18 V, -40°C \leq T_A \leq 125°C, GND = 0 V.

 $^{^2}$ Parameters guaranteed for 7.0 V \leq V_{SUP} \leq 18 V

³ Voltage range at the battery level, including the reverse battery diode.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Ibus_lim	Current Limitation for Driver Dominant State	Driver on, V _{BUS} = 18 V	60	70	80	mA
IBUS_PAS_DOM	Input Leakage Current at the Receiver	Driver off; V _{BUS} = 0 V; V _{BAT} = 12 V	-0.368	-	-	mA
IBUS_PAS_REC	Leakage Output Current to GND	Driver Off; 8.0 V $<$ Vbat $<$ 18 V; 8.0 V $<$ Vbus $<$ 18 V; 8.0 V $<$ Vbus $<$ 18 V; Vbus \geq Vbat; Vbus \geq Vsup	-	-	20	μA
Ibus_no_gnd		Control Unit Disconnected from Ground ¹ GND _{DEVICE} = V _{SUP} ; V _{BAT} = 12 V; 0 < V _{BUS} < 18 V	-1.0	-	1.0	mA
Ibus_no_bat		V_{BAT} Disconnected; $V_{SUP_DEVICE} = GND$; 0 V < V_{BUS} < 18 V^{2}	-	-	100	μA
VBUSDOM	Receiver Dominant State ³		-	-	0.4	VSUP
VBUSREC	Receiver Recessive State ⁴		0.6	-	-	VSUP
VBUS_CNT	Receiver Threshold Center (VTH_DOM + VTH_REC)/2		0.475	0.5	0.525	VSUP
Vhys	Receiver Threshold Hysteresis (VTH_DOM - VTH_REC)		-	-	0.175	VSUP
Rslave	LIN Pull-up Resistor to Vsup		20	30	60	kΩ
CLIN	LIN Internal Capacitor ⁵		-	-	250	pF
INH Output P	Pin					
INH _{ON}	Driver On Resistance (Normal Mode)	I _{INH} = 50 mA	-	20	50	Ω
INH_LOAD	Current load capability	From 7.0 V < V _{SUP} < 18 V	-	-	30	mA
ILEAK	Leakage Current (Sleep Mode)	0 < V _{INH} < V _{SUP}	-5.0	-	5.0	μA
WAKE Input	Pin					
V _{WUHL1}	High to Low Detection Threshold	$5.5 \text{ V} < \text{V}_{\text{SUP}} < 7 \text{ V}$	2.0	-	3.9	V
V _{WULH1}	Low to High Detection Threshold	5.5 V < V _{SUP} < 7 V	2.4	-	4.3	V
Vwuhys1	Hysteresis	$5.5 \text{ V} < \text{V}_{SUP} < 7 \text{ V}$	0.2	-	0.8	V
Vwuhl2	High to Low Detection Threshold	$7 \text{ V} \leq V_{SUP} < 26 \text{ V}$	2.4	-	3.9	V
Vwulh2	Low to High Detection Threshold	$7 \text{ V} \leq V_{SUP} < 26 \text{ V}$	2.9	-	4.3	V
Vwuhys2	Hysteresis	$7 \text{ V} \leq V_{SUP} < 26 \text{ V}$	0.2	-	0.8	V
lwu	Wake-up Input Current	V _{WAKE} < 27 V	-	-	3.0	μΑ

9. Dynamic Electrical Characteristics

Characteristics under conditions 7.0 V \leq V_{SUP} \leq 18 V, -40°C \leq T_A \leq 125°C, GND = 0 V, unless otherwise noted. Typical values reflect the approximate parameter means at T_A = 25°C under nominal conditions, unless otherwise noted.

¹ Loss of local ground must not affect communication in the residual network.

² Node has to sustain the current that can flow under this condition. The bus must remain operational under this condition.

³ LIN threshold for a dominant state.

⁴ LIN threshold for a recessive state.

⁵ This parameter is guaranteed by process monitoring but not production tested.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
LIN Physica	Layer	1				
Driver Char	acteristics For Normal Slew Rate - 20.0 KBIT/SEC1.2					
	Duty Cycle 1:					
D1	$TH_{REC(MAX)} = 0.744 * V_{SUP}$		0.396	-	-	%
DI	$TH_{DOM(MAX)} = 0.581 * V_{SUP}$		0.000			,,,
	D1 = $t_{BUS_{REC}(MIN)/(2 \times t_{BIT})}$, $t_{BIT} = 50 \mu s$, 7.0 V $\leq V_{SUP} \leq 18 V$					
	Duty Cycle 2:					
D2	TH _{REC(MIN)} = 0.422 * V _{SUP}		-	-	0.581	%
	TH _{DOM} (MIN) = $0.284 * V_{SUP}$					
LIN Physica	D2 = t _{BUS_REC(MAX)} /(2 x t _{BIT}), t _{BIT} = 50 μ s, 7.6 V \leq V _{SUP} \leq 18 V					
•	acteristics For Fast Slew Rate					
D.D	East Bit Bata (Brogramming Made)			_	100	kbit
BRFAST	Fast Bit Rate (Programming Mode)		-	-	100	sec
LIN Physica	,					
Transmitter	Characteristics For Normal Slew Rate - 20.0 KBIT/SEC ³				1	
	Symmetry of Transmitter delay ^{<u>4</u>}					
	tran sym = MAX (tran sym60%, tran sym40%)		7.05		7.05	
ttran_sym	tran_sym60% = tran_pdf60% - tran_pdr60%		-7.25	-	7.25	μs
	tran sym40% = tran pdf40% - tran pdr40%					
LIN physical						
• •	haracteristics ⁵					
trec pd	Propagation Delay of Receiver, $t_{REC_PD} = MAX (t_{REC_PDR}, t_{REC_PDF})^{6}$		-	-	6.0	μs
trec sym	Symmetry of Receiver Propagation Delay, trec PDF - trec PDF		-0.5	_	0.5	μs
Wake-Up Ti	, , , , , , , , , , , , , , , , , , , ,		0.5		0.5	٣٩
•	•	Clear Mada	40	70	100	
twuf	Bus Wake-up Deglitcher	Sleep Mode	40	70	100	μs
t lwue	EN Wake-up Deglitcher ⁷	EN High to INH	-	9	15	μs
		Low to High Wake state				
twr	Wake-up Deglitcher	change to INH	10	48	70	μs
LVVF		Low to High	10	40	70	μ
First Domin	ant Bit Validation	2011 10 11.8.1			1	
t _{first} dom	First dominate bit validation delay	Normal Mode	-	45	80	μs
Sleep Mode		I [
•		After EN High to				
+	Clean Made Delay Time	Low to INH High	50	60	91	
t _{sd}	Sleep Mode Delay Time	to Low with 100	50	00	91	μs
		μA load on INH				
TXD Timing						
						1

¹ Bus load R_{BUS} and C_{BUS} 1.0 nF / 1.0 k Ω , 6.8 nF / 660 Ω , 10 nF / 500 Ω . Measurement thresholds: 50% of TXD signal to LIN signal threshold defined at each parameter. See Figure 3.

² See Figure 4.

 $^{^3}$ V_{SUP} from 7.0 to 18 V, bus load R_{BUS} and C_{BUS} 1.0 nF / 1.0 k Ω , 6.8 nF / 660 Ω , 10 nF / 500 Ω . Measurement thresholds: 50% of TXD signal to LIN signal threshold defined at each parameter. See Figure 3.

⁴ See <u>Figure 5</u>.

 $^{^{5}}$ V_{SUP} from 7.0 to 18 V, bus load R_{BUS} and C_{BUS} 1.0 nF / 1.0 k Ω , 6.8 nF / 660 Ω , 10 nF / 500 Ω . Measurement thresholds: 50% of TXD signal to LIN signal threshold defined at each parameter. See Figure 3.

⁶ See <u>Figure 6</u>. ⁷ See <u>Figure 7</u>.

⁸ The LIN is in recessive state and the receiver is still active.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit				
Fast Baud R	Fast Baud Rate Timing									
t1	EN Low Pulse Duration to Enter in Fast Baud Rate using ToggleEN High to LowFunction1and Low to High		-	-	45	μs				
t2	TXD Low Pulse Duration to Enter in Fast Baud Rate using Toggle Function $^{\underline{1}}$		12.5	-	-	μs				
t3	Delay Between EN Falling Edge and TXD Falling Edge to Enter in Fast Baud Rate Using Toggle Function $\!\!\!^{\underline{1}}$		12.5	-	-	μs				
t4	t ₄ Delay Between TXD Rising Edge and EN Rising Edge to Enter in Fast Baud Rate Using Toggle Function ¹		12.5	-	-	μs				
t5	RXD Low Level duration after EN rising edge to validate the Fast Baud Rate $entrance^{\underline{1}}$		1.875		6.25	μs				

9.1 Timing Diagrams

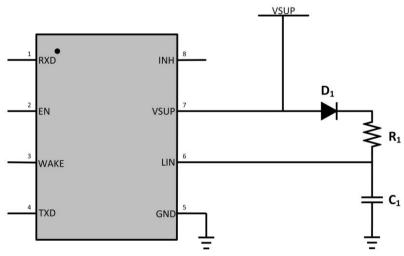


Figure 3: Test circuit for timing measurements

9

¹ See <u>Figure 8</u> and <u>9</u>.

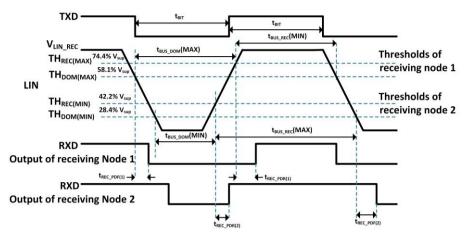
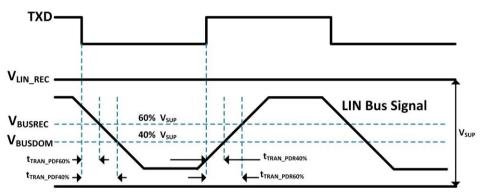
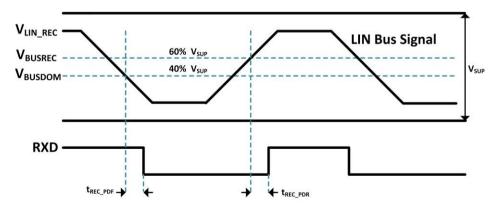
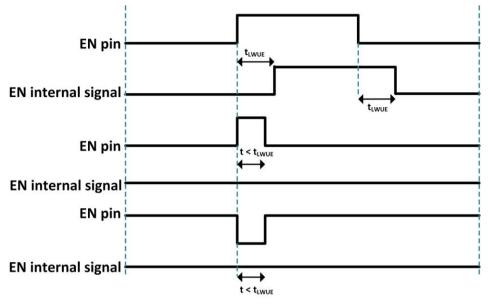
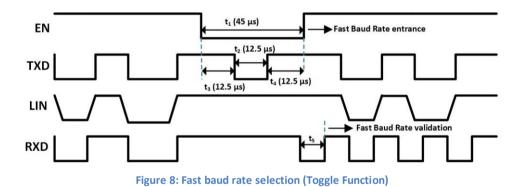




Figure 4: LIN timing measurements for normal baud rate





9.2 Functional Diagrams

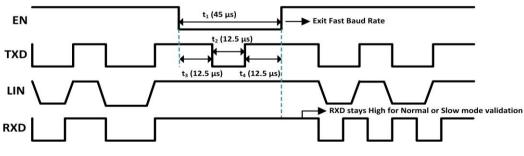


Figure 9: Fast baud rate mode exit (back to normal or slow slew rate)

10. Functional Pin Description

10.1 Data Output Pin (RXD)

RXD output pin is the MCU interface, which reports the state of the LIN bus voltage. In Normal or Slow baud rate, LIN high (recessive) is reported by a high voltage on RXD; LIN low (dominant) is reported by a low voltage on RXD. The RXD output structure is a tristate output buffer (See Figure 10). The RXD output pin is the receiver output of the LIN interface. The low level is fixed. The high level is dependent on EN voltage. In Sleep mode, RXD is high-impedance. When a wake-up event is recognized from the WAKE pin or from the LIN bus pin, RXD is pulled LOW to report the wake-up event. An external pull-up resistor may be needed.

10.2 Enable Input Pin (EN)

EN input pin controls the operation mode of the interface. If EN = 1, the interface is in Normal mode, TXD to LIN after t_{FIRST_DOM} delay and LIN to RXD paths are both active. RXD V_{OH} level follows EN pin high level. The device enters the Sleep mode by setting EN LOW for a delay higher than t_{SD} (70 µs typ. value) and if the WAKE pin state doesn't change during this delay. A combination of the logic levels on the EN and TXD pins allows the device to enter into the Fast Baud Rate mode of operation (see Figure 8).

10.3 Wake Input Pin (WAKE)

The WAKE pin is a high voltage input used to wakeup the device from the Sleep mode. WAKE is usually connected to an external switch in the application. The WAKE pin has a special design structure and allows wake-up from both high to low or low to high transitions. When entering into sleep mode, the device monitors the state of the WAKE pin and stores it as a reference state. The opposite state of this reference state will be the wake-up event used by the device to enter again structure exhibits a high-impedance, with extremely low input current when voltage at this pin is below 27 V. Two serial resistors should be inserted in order to limit the input current mainly during transient pulses and ESD. The total recommended resistor value is 33 k Ω . An external 10 to 100 nF capacitor is advised for better EMC and ESD performances.

10.4 Data Input Pin (TXD)

The TXD input pin is the MCU interface to control the state of the LIN output. When TXD is low (dominant), LIN output is low; when TXD is high (recessive), the LIN output transistor is turned off. This pin has an internal pull-up current source to force the recessive state if the input pin is left floating. If the pin stays low (dominant sate) more than 5.0 ms (typical value), the LIN transmitter goes automatically into recessive state.

10.5 Ground Pin (GND)

In case of a ground disconnection at the module level, device does not have significant current consumption on the LIN bus pin when in the recessive state.

10.6 LIN Bus Pin (LIN)

The LIN pin represents the single-wire bus transmitter and receiver. It is suited for automotive bus systems. The LIN interface is only active during normal mode (See Figure 11). LIN bus short-to-ground, or a LIN bus leakage during low power mode. The INH output can be used to control an external voltage regulator, or to drive a LIN bus pull-up resistor.

10.6.1 Transmitter Characteristics

The LIN driver is a low side MOSFET with internal overcurrent thermal shutdown. An internal pull-up resistor with a serial diode structure is integrated so no external pull-up components are required for the application in a slave node. An additional pull-up resistor of 1.0 k Ω must be added when the device is used in the master node. The LIN pin exhibits no reverse current from the LIN bus line to

 V_{SUP} , even in the event of a GND shift or V_{SUP} disconnection. As soon as the device enters in Normal mode, the LIN transmitter will be able to send the first dominant bit only after the t_{FIRST_DOM} delay. t_{FIRST_DOM} delay has no impact on the receiver. The receiver will be enabled as soon as the device enters in Normal mode.

10.6.2 Receiver Characteristics

The receiver thresholds are ratio-metric with the device supply pin. If the V_{SUP} voltage goes below the V_{SUP} under-voltage threshold (V_{UVL} , V_{UVH}), the bus enters into a recessive state even if communication is sent to TXD. In case of LIN thermal shutdown, the transceiver and receiver are in recessive and INH turned off. When the temperature is below the TLINSD, INH and LIN will be automatically enabled. The fast Baud Rate selection is reported by the RXD pin. Fast Baud Rate is activated by the toggle function (See Figure 8). At the end of the toggle function, just after EN rising edge, RXD pin is kept low for t₅ to flag the fast Baud Rate entry (See Figure 8). To exit the fast Baud Rate and return in normal or slow Baud Rate, a toggle function is needed. At the end of the toggle function, the RXD pin stays high to signal Fast Baud Rate exit (See Figure 9). The device enters into Fast Baud Rate at room and hot temperature.

10.7 Power Supply Pin (V_{SUP})

The V_{SUP} supply pin is the power supply pin. In an application, the pin is connected to a battery through a serial diode, for reverse battery protection. The DC operating voltage is from 7.0 to 18 V. This pin can sustain a standard automotive load dump condition up to 40 V. To avoid a false bus message, an under-voltage on V_{SUP} disables the transmission path (from TXD to LIN) when V_{SUP} falls below 6.7 V. Supply current in Sleep mode is typically 6.0 μ A.

The INH output pin is connected to an internal high side power MOSFET. The pin has two possible main functions. It can be used to control an external switchable voltage regulator having an inhibit input. It can also be used to drive the LIN bus external resistor in the master node application, thanks to its high drive capability. In Sleep mode, INH is turned off. If a voltage regulator inhibit input is connected to INH, the regulator will be disabled. If the master node pull-up resistor is connected to INH, the pull-up resistor will be unpowered and left floating. In case of a INH thermal shutdown, the high side is turned off and the LIN transmitter and receiver are in recessive state. An external 10 to 100 pF capacitor on INH pin is advised in order to improve EMC performances.

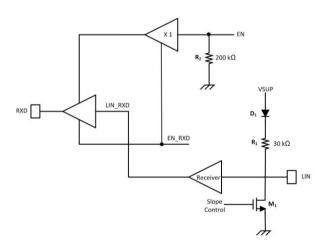


Figure 10: RXD interface

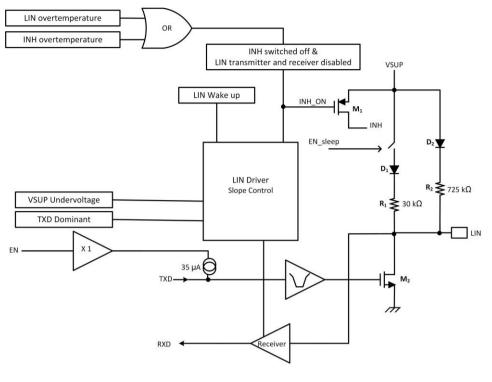


Figure 11: LIN Interface

11. Operational Modes

As described below, the device has two operational modes, Normal and Sleep. In addition, there are two transitional modes: Awake mode and Preparation to Sleep mode. The Awake mode allows the device to go into Normal mode. The Preparation to Sleep mode allows the device to go into Sleep mode.

11.1 Normal or Slow Baud Rate

In the Normal mode, the LIN bus can transmit and receive information. At normal Baud Rate (20 kbps) device has a slew rate and timing compatible with Normal Baud Rate. From Normal mode, the device can enter into Fast Baud Rate (Toggle function).

11.2 Fast Baud Rate

In Fast Baud Rate, the slew rate is around 10 times faster than the Normal Baud Rate. This allows very fast data transmission (more than 100 kbps). For instance, for electronic control unit (ECU) tests and microcontroller program download. The bus pullup resistor might be adjusted to ensure a correct RC time constant in line with the high baud rate used. Fast Baud Rate is entered via a special sequence (called toggle function) as follows:

- 1- EN pin set LOW while TXD is High
- 2- TXD stays High for 12.5 μs
- 3- TXD set Low for 12.5 µs
- 4- TXD pulled HIGH for 12.5 μs
- 5- EN pin set Low to High while TXD still Highline

The device enters into the Fast Baud Rate if the delay between Step 1 to Step 5 is 45 μ s maximum. The same toggle function is used to bring the device back into Normal Baud Rate. Fast Baud Rate selection is reported to the MCU by RXD pin. When the device returns in Normal Baud Rate with the same toggle function, the RXD pin stays high.

11.3 Preparation to Sleep Mode

To enter the Preparation to Sleep mode, EN must be low for a delay higher than t_{LWUE} . If the WAKE pin state doesn't change during t_{SD} and t_{LWUE} then the device goes into Sleep mode. If the WAKE pin state changes during t_{SD} and if t_{WF} is reached after end of t_{SD} then the device goes into Sleep mode after the end of t_{SD} timing. If the WAKE pin state changes during t_{SD} and t_{WF} delay has been reached before the end of t_{SD} then the device goes into Awake mode. If the WAKE pin state changes before t_{SD} and the delay t_{WF} ends during t_{SD} then the device goes into Awake mode. If EN goes high for a delay higher than t_{LWUE} , the device returns to Normal mode.

11.4 Sleep Mode

To enter into Sleep mode, EN must be low for a delay longer than t_{sp} and the Wake pin must stay in the same state (High or Low) during this delay. In Sleep mode, the transmission path is disabled and the device is in Low Power mode. Supply current from V_{SUP} is very low (6.0 μ A typical value). Wake-up can occur from LIN bus activity, from the EN pin and from the WAKE input pin. If during the preparation to Sleep mode delay (t_{SD}), the LIN bus goes low due to LIN network communication, the device still enters into the Sleep mode. The device can be awakened by a recessive to dominant start, followed by a dominant to recessive state after t > t_{WUF} . After a Wake-up event, the device enters into Awake mode. In the Sleep mode, the internal 725 $k\Omega$ pull-up resistor is connected and the 30 $k\Omega$ is disconnected.

11.5 Device Power-Up (Awake Transitional Mode)

At power-up (V_{SUP} rises from zero), when V_{SUP} is above the Power On Reset voltage, the device automatically switches after a 160 µs delay time to the Awake transitional mode. It switches the INH pin to a High state and RXD to a Low state.

11.5.1Device Wake-Up Events

The device can be awakened from Sleep mode by three wake-up events:

 Remote wake-up via LIN bus activity: The device is awakened by a LIN dominant pulse longer than t_{WUF}. Dominant pulse means: a recessive to dominant transition, wait for t > t_{WUF} , then a dominant to recessive. Once the wake-up is detected (during the dominant to recessive transition), the device enters into Awake mode, with INH High and RXD pulled Low. Once in the Awake mode, the EN pin has to be set to 5.0 V to enter into Normal mode. Once in Normal mode, the device has to wait t_{FIRST_DOM} delay before transmitting the first dominant bit.

- Via the EN pin: The device can be waked-up by a Low to High transition of the EN pin. When EN is switched from LOW to HIGH and stays HIGH for a delay higher than t_{LWUE}, the device is awakened and enters into Normal mode. Once in Normal mode, the device has to wait t_{FIRST_DOM} delay before transmitting the first dominant bit.
- Toggling the WAKE pin: Just before entering the Sleep mode, the WAKE pin state is stored. A change in the level longer than the deglitcher time (70 µs maximum) will generate a wake-up, and the device enters into the Awake Transitional mode, with INH High and RXD pulled Low. The device goes into Normal mode when EN is switched from Low to High and stays High for a delay higher than t_{LWUE}. Once in Normal mode, the device has to wait t_{FIRST_DOM} delay before transmitting the first dominant bit.

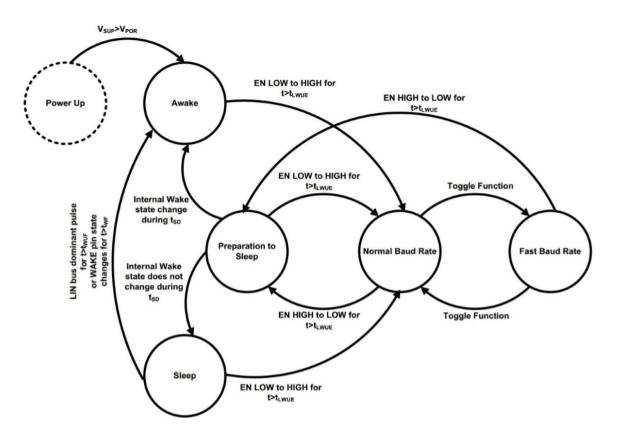


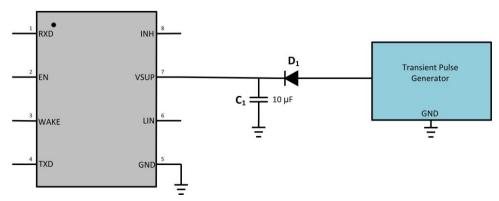
Figure 12: Operational and transitional modes state diagram

The following table explains Figure 12:

Operational/ Transitional	LIN	INH	EN	ТХД	RXD
Sleep	Recessive state, driver off with 725 $k\Omega$ pull-up	OFF (low)	LOW	x	High-impedance HIGH if external pull-up to VDD
Awake	Recessive state, driver off. 725 k Ω pull-up active	ON (high)	LOW	х	LOW. If external pull-up, HIGH-to-LOW transition reports wake-up
Preparation to Sleep mode	Recessive state, driver off with 725 $k\Omega$ pull-up	ON (high)	LOW	x	High-impedance. High if external pull-up to V _{SUP}
Normal mode	Driver active. 30 k Ω pull-up active	ON (high)	HIGH	Low to drive LIN bus in dominant High to drive LIN bus in recessive	Report LIN bus state: • Low LIN bus dominant • High LIN bus recessive

X = Don't care.

11.6 Fail Safe Features


The table below describes the device protections:

Block	Fault	Functional mode	Condition	Response	Recovery condition	Recovery functionality mode
Power Supply	Power on Reset (POR)	All modes	V _{SUP} < 3.5 V (min) then power up	No internal supplies	Condition gone	Device goes in Awake mode whatever the previous device mode
INH	INH Thermal Shutdown	Normal, Awake & Preparation to Sleep modes	Temperature > 160 °C (typical)	INH high side turned off. LIN transmitter and receiver in recessive state	Condition gone	Device returns in same functional mode
	V _{SUP} under- voltage TXD Pin Permanent Dominant	Normal	Vsup < Vuvl	LIN transmitter in recessive state	Condition gone	Device returns in same functional mode
LIN			TXD pin low for more than 5.0 ms (typical)	LIN transmitter in recessive state	Condition gone	Device returns in same functional mode
	LIN Thermal Shutdown	Normal	Temperature > 160 °C (typical)	LIN transmitter and receiver in recessive state INH high side turned off	Condition gone	Device returns in same functional mode

12. Test Circuit for Transient Test Pulses and Their Limits

The following table shows the limits of test voltage for transient immunity tests:

Test Pulse	V _S (V)	Pulse repetition frequency (Hz) (1/T ₁)	Test duration (min)	R _i (Ω)	Remarks
1	-100	2		10	t2 = 0 s
2a	+75	2	1 for function test	2	
3a	-150	10000	10 for damage test	50	
3b	+100	10000		50	

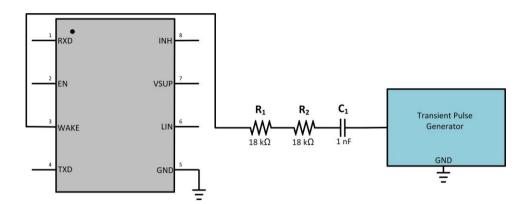


Figure 14: Test circuit for transient test pulses (WAKE)

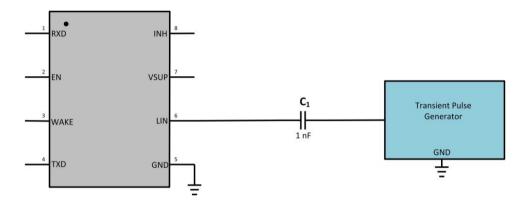


Figure 15: Test circuit for transient test pulses (LIN)

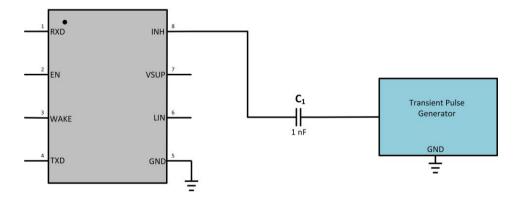
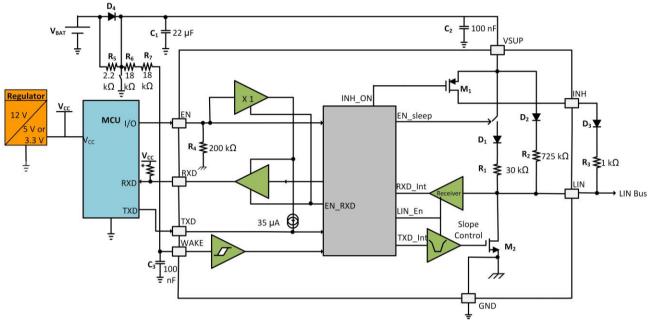
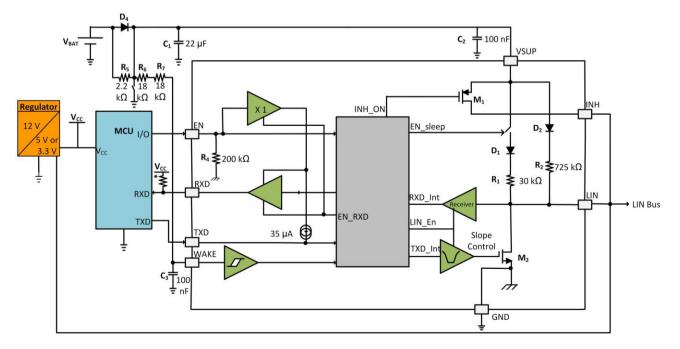



Figure 16: Test circuit for transient test pulses (INH)


13. Applications

The device can be configured for several applications. Figure 17 and 18 show master and slave node applications. An additional pull-up resistor of 1.0 k Ω in series with a diode between the INH and LIN pins must be added when the device is used in the master node.

*: Optional. 2.2k Ω if implemented

Figure 17: Master node typical application

*: Optional. 2.2kΩ if implemented

Figure 18: Slave node typical application

14. Packaging

14.1 Summary

Terminal position code	
Package type descriptive code	
Package type industry code	
Package style descriptive code	
Package body material type	
Mounting method type	
Issue date	
Manufacturer package code	

D (double)
SO8
SO8
SO (small outline)
P (plastic)
S (surface mount)
18-2-2003
SOT96

Symbol	Parameter	Min	Nom	Max	Unit
А	Seated height		1.75	1.75	mm
A ₂	Package height	1.25	1.35	1.45	mm
D	Package length	4.8	4.9	5	mm
е	Nominal pitch		1.27		mm
E	Package width	3.8	3.9	4	mm
n ₂	Actual quantity of termination		8		

14.2 Package Outline

Parameter	Min	Max	Unit
$D^{\underline{1}}$	4.8	5	mm
у	0.1	0.1	mm

Parameter	Min	Max	Unit
A _{MAX}	1.75	1.75	mm
A ₁	0.1	0.25	mm
A ₂	1.25	1.45	mm
A ₃	0.25	0.25	mm
L	1.05	1.05	mm
Lp	0.4	1.0	mm
Q	0.6	0.7	mm
θ	0°	8°	mm

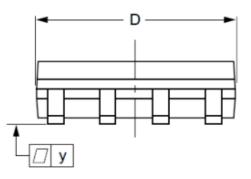


Figure 19

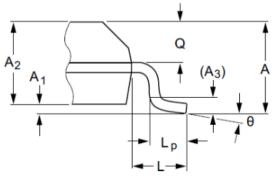


Figure 20

¹ Plastic or metal protrusions of 0.15 mm maximum per side are not included.

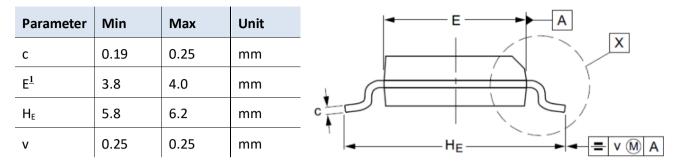
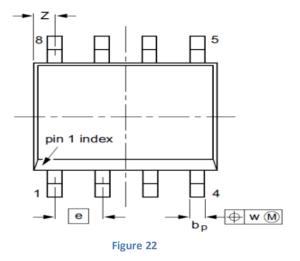



Figure 21

Parameter	Min	Max	Unit
b _p	0.36	0.49	mm
е	1.27	1.27	mm
w	0.25	0.25	mm
Z ²	0.3	0.7	mm

¹ Plastic or metal protrusions of 0.25 mm maximum per side are not included.

² Plastic or metal protrusions of 0.15 mm maximum per side are not included.

Contents

1. Introduction	1
2. Features	1
3. Pinning Information	2
4. Quick Reference	2
5. Ordering Information	3
6. Block Diagram	3
7. Maximum Ratings	4
8. Static Electrical Characteristics	6
9. Dynamic Electrical Characteristics	7
9.1 Timing Diagrams	9
9.2 Functional Diagrams	11
10. Functional Pin Description	
10.1 Data Output Pin (RXD)	12
10.2 Enable Input Pin (EN)	12
10.3 Wake Input Pin (WAKE)	12
10.4 Data Input Pin (TXD)	12
10.5 Ground Pin (GND)	12
10.6 LIN Bus Pin (LIN)	12
10.6.1 Transmitter Characteristics	
10.6.2 Receiver Characteristics	13
10.7 Power Supply Pin (V _{SUP})	13
10.8 Inhibit Output Pin(INH)	13
11. Operational Modes	14
11.1 Normal or Slow Baud Rate	14
11.2 Fast Baud Rate	14
11.3 Preparation to Sleep Mode	14
11.4 Sleep Mode	15
11.5 Device Power-Up (Awake Transitional Mode)	15
11.5.1 Device Wake-Up Events	15
11.6 Fail Safe Features	17
12. Test Circuit for Transient Test Pulses and Their Limits	17
13. Applications	19
14. Packaging	20
14.1 Summary	
14.2 Package Outline	20